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Final Report ARO W911NF-08-1-0493 

High Strength and Light-weight Materials Inspired by the 
Exoskeleton of Arthropods 

Anette Karlsson, Dept. Mechanical Engineering. University of Delaware, January 2010 
 
Objectives 

The overall objective of the proposed work was to establish the multiscaled structure and the 
constitutive behavior of exoskeleton of arthropods. The following tasks are defined for the 
proposed short term investigation: (1) Establish the morphology of the multiscale structure for 
selected exoskeleton materials through careful and systematic image analyses; (2) Explore the 
mechanical properties; (3) Simulate characteristic structural response of the exoskeleton using 
mechanics based numerical models and investigate how these structural responses can be 
translated into engineering materials. 

 
Summary of Results 
(1) Morphology of the multiscale structure for a Japanese Beetle  
We investigated the exoskeletal microstructure of a common insect, Popillia japonica 

(Japanese beetle). This structure was compared to a previous study, where Homarus americanus 
(American lobster) and Callinectes sapidus (Atlantic blue crab) were investigated [1]. 

Image analysis via SEM and TEM revealed a common morphology in cuticles from the 
pronotum, leg and elytron. All exoskeletons consist of four regions, including (from external 
surface and inwards and corresponding to increasing thickness) epicuticle, exocuticle, 
mesocuticle and endocuticle, fig. 1 [2]. The latter three regions are the load-bearing structures 
and are comprised of chitin-protein fiber layers orientated parallel to the cuticle surface. The 
chitin fibers in the exocuticle and mesocuticle are organized in a helicoidal structure, which is 
characterized by layers stacked with a small rotational angle relative to their adjacent layers, Fig 
1B, Fig. 2A, B. The endocuticle has a distinct pseudo-orthogonal pattern, which is characterized 
by a thin transitional helicoidal region inserted between two orthogonally stacked layers Fig. 2C, 
Fig 3.  

Idealized mechanics based models of orthogonally layered structures with and without the 
helicoidal transitional region (corresponding to the pseudo-orthogonal and conventional cross-
ply laminates respectively) were developed for evaluating the endocuticle’s mechanical response 
within the linear elastic range, Fig. 4. The mechanical response of the conventional cross-ply 
laminate includes discontinuity of the normal stress (Fig 5A) and transverse shear strain (Fig 6B) 
at the interfaces of the orthogonal laminae due to the discontinuous material properties 
(assuming laminate theory within the framework of continuum mechanics). The introduction of a 
pseudo-orthogonal structure results in a redistribution of the stress and strain fields, including 
smaller discontinuities between the layers and more uniform stress and strain distribution over 
the cross-section, Figs. 5 and 6. The pseudo-orthogonal structure results in reduced maximum 
tensile stress and transverse shear stress in the across-section.  The magnitude of the 
discontinuity (jump) in the normal stress and shear strain is significantly reduced as well. 
Furthermore, the interfacial strain energy release rate of the laminate is lower in the pseudo-
orthogonal structure compared to the cross-ply laminate, suggesting that the pseudo-orthogonal 
structure may be more resistant to fracture. 
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Laminated composite structures were designed and manufactured with bio-inspired 
structural patterns. To investigate how the layup sequence affect man-made materials, four 
model configurations characterized by distinctive stacking-sequence were developed: (1) a 
baseline structure (BL), which is widely used in industry as a quasi-isotropic structure; (2) a 
“single helicoidal” structure (SH) with its stacking sequence directly replicated from the nature 
designed helicoidal structure; and two variations (3) a “double helicoidal” structure (DH) and (4) 
a “single helicoidal mid-plane symmetric” structure (SHMS). The last two configurations were 
developed to address the mid-plane symmetry issue.  Uni-directional S2-glass epoxy prepreg was 
used as model material.  We note that we do not believe this is the best suited material system, 
but believe this well-known material system may reveal imported structural implications. The 
mechanical performance was evaluated via standard test protocols (ASTM D790 and ASTM 
D2344), including the flexural stiffness and strength, transverse shear modulus and strength, as 
well as residual strength. The bio-inspired structure showed improved mechanical properties 
over the conventional baseline structure that is widely used in industry, including the bending 
stiffness (Fig. 7) and the residual strength under static load (Fig. 8). The improvement was more 
significant when a “smaller” fiber rotation was used, such as the SH and SHMS structures. Also, 
the warping problem during practical manufacturing was addressed by enforcing mid-plane 
symmetry in the laminate design; meanwhile the mechanical advantages of the bio-material 
system were still retained. The improvement on the mechanical performance observed in the bio-
inspired structure underscored the advantages of the helicodial structural pattern. With proper 
combination with the practical manufacturing wisdom, such as mid-plane symmetry, the nature 
designed helicoidal structure possessed great potential in future practical application. 

 
Conclusion  
The results reveal interesting aspects of the strategy of the nature in designing and 

manufacturing functional biomaterial systems. These observations may be used to inspire and 
improve man-made materials and structures. Preliminary work indicates that the layup have clear 
potential for superior residual strength after initial failure. 

 
References: 
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the exoskeletal microstructure of Popillia japonica, J Materials Research, 24(11) 3253-3267 
(2009) 

[3] Cheng L, Glancey JL and Karlsson AM, Mechanical behavior of bio-inspired laminate 
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(A) Blue Crab and Lobster (B) Japanese Beetle 

Fig. 1 Schematic of the upper structural levels of a (A) Homarus americanus (American lobster) exoskeleton [1] and 
(B) Popillia japonica (Japanese beetle) exoskeleton [2].  In both cases, the epicuticle, a diffusion barrier, is not a 
structural load bearing layer The exocuticle, mesocuticle (beetle only) and endocuticle are the main load bearing 
structures composed of fibrous chitin-protein fibers organized as either helicoidal or pseudo-orthogonal structures.  

 
Fig. 2 SEM images of the exoskeleton (elytron) of a Popillia japonica. (A) Overview of the cross-section; (B) 
Epicuticle and exocuticle (~2 µm thick); (C) Mesocuticle (7-7.5 µm thick); and (D) Endocuticle (10-11 µm thick). 
The stacking of two orthogonal layers is shown in the endocuticle.[2] 
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Fig. 3 The pseudo-orthogonal pattern of the chitin-protein fibers in the endocuticle. (A) A zigzag pattern seen in a 
SEM image of an oblique section of the endocuticle from the Popillia japonica elytron; (B) A TEM image of an 
oblique section of the endocuticle, suggesting a helicoidal transitional region (parabolic pattern) between the two 
orthogonal layers (the size of the transitional region appears to be thicker than the true thickness since it is 
observed from an oblique section); (C) A schematic representation of the pseudo-orthogonal pattern: The two 
orthogonally stacked unidirectional layers each consists of parallel fibers. A thin transition region assembling a 
helicoidal structure (Bouligand-structure) joins the two orthogonal layers; (D) An oblique cut in the pseudo-
orthogonal block; (E) The side view of the oblique cut displays the zigzag and parabolic pattern seen in (A) and (B). 
[2] 

 
 

Fig. 4 Models of (A) the traditional cross-ply laminate and (B) bio-inspired pseudo-orthogonal laminate of 
thickness, H. The cross-sections of the laminates are subjected to the general load of bending moment M and shear 
force V (load per unit width). The schematic enlargement of each region indicates the fiber orientation in the 
corresponding region. [2] 
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Fig. 5 (A) Normalized normal stress and (B) normal strain distribution over the cross section of the laminate 

with selected numbers of lamina in the transitional region.[2] 
 

 
 

Fig. 6 (A) Normalized transverse shear stress and (B) strain distributions over the cross section of the 
laminate with selected numbers of lamina in the transitional region. [2] 
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Fig. 7 Normalized flexural stiffness of laminates beams with different structures from the “long beam 
test” (ASTM D790). [3] 
 

  
(A) (B) 

Fig. 8 (A) A typical force-displacement curve from the “short beam test” (ASTM D2344). 𝑷𝑷� is the 
average residual force after the onset of initial damage. (B) Normalized residual strength of laminated 
composites with different structures. The red bar indicates the standard deviation of the result in each 
group. [3] 
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